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Abstract: The microvalve is one of the most important components in microfluidics. With decades of
development, the microvalve has been widely used in many industries such as life science, chemical
engineering, chip, and so forth. This paper presents a comprehensive review of the progress made
over the past years about microvalves based on different actuation mechanisms. According to driving
sources, plenty of actuation mechanisms are developed and adopted in microvalves, including
electricity, magnetism, gas, material and creature, surface acoustic wave, and so on. Although there
are currently a variety of microvalves, problems such as leakage, low precision, poor reliability,
high energy consumption, and high cost still exist. Problems deserving to be further addressed are
suggested, aimed at materials, fabrication methods, controlling performances, flow characteristics,
and applications.
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1. Introduction

As an emerging technology, microfluidic manipulates small amounts of liquid utilizing
microchannel with tens to hundreds of microns in size. Microfluidics systems are widely used
in many fields, including biomedical engineering, chemical engineering, etc. Liquid-liquid two phase
flow in the microchannel is the typical phenomenon in the microfluidic systems. Flow pattern, mass
transfer, and mixing efficiency are the most important considerations for two-phase flow [1–4]. Most
microfluidic systems use lithography for manufacturing, and they are characterized by miniaturization,
automation, integration, and portability. Compared to traditional experimental equipment, microfluidic
systems have obvious advantages: low cost (a little amount of sample), high precision, small space,
effective flow control, etc. In order to achieve fluid control and operation at a microscopic scale,
there are several main components that constitute the microfluidic systems, such as microsensors,
micropumps, microvalves, micromixers, and microchannels.

The microvalve is one of the most important components in microfluidic systems, and its functions
include flow regulation, on/off switching, sealing of biomolecules, micro/nano particles, chemical
reagents, etc. The main properties of existing microvalves include low leakage, small dead volume,
low power consumption, insensitivity to particle contamination, fast response, and linear operation.
Based on their structure, microvalves can be divided into two kinds: active microvalves and passive
microvalves. The active microvalve needs to control the microfluid with a driving device, and the
passive microvalve can generally control the microfluid by the back pressure. In addition, according
to the initial state, the microvalve can be divided into two kinds: normally open type and normally
closed type.

As for microvalves, the application and the function of them are depended on their structures,
and their structures are related to their actuation mechanisms. For example, the micro Tesla valve
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is comprised of three sections of microchannels. When the fluid flows in the forward direction, the
total pressure loss is small, but when the fluid flows in the reverse direction, the loss is great. Thus,
the Tesla valve is a typical microvalve without external force and it is applied to the hydrogen fuel
cell [5–7]. In fact, microvalves have no fixed structure, but almost have the microchannel and the
substrate. Most of them also have a membrane to control the opening and closing of the microchannel.
Many scholars have studied the application of valves with different actuation mechanisms, mainly
focusing on bioengineering and chemical engineering. In the bioengineering field, microvalves are
worked as medical devices for the treatment of human diseases based on some special actuation
mechanism, and some of them are used in drug delivery applications [8]. As for the patients who
suffer from hepatocellular carcinoma (HCC), they had to complete a liver transplant and transarterial
chemoembolization (TACE) was needed after the surgery. Titano et al. invented an end-hole versus
microvalve infusion catheter to optimize the effectiveness of TACE [9]. Oh et al. presented a 3D dome
petal shaped polydimethylsiloxane (PDMS)/Parylene microvalve for hydrocephalus (a pathological
condition) [10,11]. Galanopoulos et al. showed an assembled micro check valve using the two-photon
polymerization technique, and the valve was implanted in veins of patients whose natural check
valves malfunction in the future [12,13]. Chen et al. showed a floating-disk self-regulating parylene
microvalve to control the biomedical flow, especially for intraocular pressure (IOP) regulation in
glaucoma patients by controlling the eye fluid drainage [14,15]. Moreover, there are also many
microvalves for bioassay and sampling equipment. Szydzik et al. reported that the V-gate elastomeric
microvalve affected haemocompatibility, and the microvalve based on pneumatic actuation could
realize rapid switching control for blood sample delivery [16]. Cheng et al. presented a normally
closed plunger microvalve based on electrical self-actuation, for in vivo and point-of-care diagnostic
application [17]. Lv et al. showed a cam structured medical digital microvalve, which worked as
the core of flow control systems for clinical and surgical transfusion devices [18]. Augustine et al.
displayed a low-cost all-plastic microvalve array for multiplexed immunoassay that measure the
presence and concentration of multiple harmful agent [19]. Landari et al. presented a unidirectional
embedded microvalve which was connected to a miniaturized micropump, for drug delivery and low
pressure biomedical applications [20].

In chemical engineering, as an important part of many experimental instruments (like
lab-on-a-chip), scholars have proposed a number of microvalves based on specific actuation mechanisms
to achieve specific functions. Sung et al. developed a low-cost PDMS microvalve to control multiple
reagents for enzyme-linked immunosorbent assay (ELISA) on a programmable lab-on-a-chip (LOC)
platform [21]. Flores et al. presented a low consumption single-use microvalve, which was used
to impulse small volumes of fluids, and it had been designed to be highly integrable in printed
circuit boards (PCB) based microfluidic platforms [22]. Lee et al. proposed a 3D-printed quake-style
microvalve, which provided a significant improvement to the performance of equipment such as
microscopes and piping simplicity for future large-scale arrays [23]. Wang et al. investigated a
new microvalve design of an elastomer normally closed microvalve, which was widely used in high
density microfluidics systems to minimize actuation pressures and ensure reliable operation [24].
Li et al. studied a pneumatic microvalve controlled microfluidic chip, which provided precise fluidic
control for cell manipulation in divisional cell co-culture [25]. Liu et al. researched a pneumatic
control method of a novel electromagnetic microvalve based on microchamber air pressure to improve
controlling precision in microfluidic chips [26]. Based on liquid surface tension sealing of the molten
solder, Yang et al. proposed a resealable, ultra low-leak microvalve for vacuum applications [27].
Tahvildari et al. demonstrated a microfluidic device which consisted of multiple microvalves and an
array of nanopores, and the device could realize the precise manipulation of fluidic and electrical access
to various regions of the embedded silicon nitride (Si-N) membrane [28]. Manginell et al. invented a
phase-change microvalve for greenhouse gas (GHG) sampling, and the valve had low leakage rate and
a long storage time [29].
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Due to various kinds and complex structures, there is currently no article to categorize newly
emerged microvalves in the past decade based on actuation mechanisms. Thus, this paper mainly
focuses on actuation mechanisms of microvalves, and classifies different microvalves by different
driving sources, including electricity, gas, magnetism, material and creature, surface acoustic wave
(SAW), etc. In addition, the materials required for each actuation mechanism and corresponding
applications are also presented in this paper. The review of microvalves is of benefit to help readers
understand how microvalves work. This paper also discusses the disadvantages of existing microvalves
and proposes the direction for improvement in the future.

2. Actuation Mechanisms of Microvalves

According to different driving sources, the actuation mechanisms of microvalves are divided into
five aspects in this paper, including electricity, magnetism, gas, material and creature, and surface
acoustic wave (SAW). Different applications require different actuation mechanisms. For example,
some devices cannot be connected to an external power supply, thus the microvalve may be actuated
by magnetism; pH-sensitive actuation and biology actuation are used to meet the requirements of
no energy consumption; some experiments are dangerous, a light-actuated microvalve or a SAW
microvalve can be utilized in the experiment. In this section, microvalves based on different actuation
mechanisms are summarized from application, structures, fabrication methods, materials, advantages,
disadvantages and so on. The selection of energy-efficient and efficient actuation mechanisms is an
important research direction for future microvalve research.

2.1. Electricity Actuation

2.1.1. Electrostatic Actuation

The electrostatic microvalve mainly comprises a valve-closing electrode, a valve-opening electrode,
and a flexible movable membrane. The operation of the valve is realized by controlling the voltage,
which is applied to the membrane. The equation for the electrostatic force between two electrodes is
given by

Fe =
(
ε0εaAV2

)
/
(
2g2

)
(1)

where εo is the vacuum permittivity, εa is the dielectric constant of the air between electrodes, A is
the area of the electrode, V is the voltage across the electrodes, and g is the total distance between the
electrodes [30].

A theoretical model was made to predict the closing voltage when the valve is completely open.
A force balance was performed on the membrane and can be represented by

Fe + Fs + Fa = 0 (2)

There are three forces acting on the valve membrane: the electrostatic force, Fe, pulling up on the
membrane, the spring force, Fs, pulling up on the membrane and the force from the air pressure, Fa,
pushing down on the membrane [30].

The response time of the valve is short, and the energy consumption of it is low. When the valve is
used to control fluid flow, the applied voltage is high. Thus, this type of valve is mainly used to controls
high pressure airflow. Some electrostatic microvalves can withstand pressures up to 126 kPa [31].
Electrostatic microvalves are mostly normally-closed microvalves.

Structures of the normally-closed electrostatic microvalve and the normally-opened electrostatic
microvalve do not have obvious differences from Figure 1. The biggest difference is the original shape of
the membrane, where one of the normally-closed microvalve is flat and the one of the normally-opened
is concave typed [30,32]. Due to the small size and a large number of components in the microvalve,
the fabrication process flow of an electrostatic actuated microvalve is displayed in Figure 2. The
installation sequence of the micro valve is from bottom to top, and actuation chamber is filled with a
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sacrificial photoresist layer (PR) by spinning and patterned. There are many materials used to assemble
microvalves, including the silicon substrate, Ti/Au electrodes, and the thin parylene layer. Some special
processing technologies are used to process components of microvalves, such as deep reactive ion
etched (DRIE), and reactive ion etching (RIE) [32].Micromachines 2020, 11, x 4 of 39 
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Figure 2. Fabrication process flow of electrostatic actuated microvalve [32].

Bae et al. introduced a novel bidirectional electrostatic microvalve for controlling high pressure
gas. The advantage of this valve was its microsecond switching performance [31]. The experiment
showed that the valve can open or close in 50 µs or less for applied pressures up to 126 kPa, and no
leakage was found when the pressure is up to 1.1 MPa. The prototype valve had been opened and
closed 47,000,000 times before failure. Dankovic et al. developed a thermoplastic normally-opened
microvalve using electrostatical operation [33]. The new fabrication method based on Universal Laser
System CO2 laser was applied to weld thermoplastic films. Unlike usual electrostatic microvalves, the
valve did not have the movable membrane and the channel walls collapsed toward each other when
the specified voltage is applied. The measurements showed that the leak rate was less than 10% of
the flow rate. Messner et al. proposed a normally-closed three-way microvalve based on electrostatic
actuation [34]. The fabrication of the valve used silicon micromachining to make the stack of silicon
chip install onto a ceramic substrate. Because of numerous advantages, such as the small size and
the fast response, the valve was applied to gas controlling application, even the space travel mission.
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Tice et al. proposed an electrostatic microvalve based on elastomer. The microvalve could resist
pressures up to 3 kPa with a voltage of 220 V. Replica molding, plasma bonding, and micro-transfer
printing were used to manufacture this valve and it was integrated on a single chip [35]. Yoshida et al.
proposed an electrostatic microvalve based on a new pressure balance mechanism and the electrostatic
actuator. The valve was applied to adjust the concentration of methanol in direct methanol fuel cell
(DMFC) systems [36]. The input pressure of the valve could be up to 40 kPa, and the driving voltage
ranged from 50 V to 110 V. Moreover, the novel design could satisfy many industrial requirements, like
low energy consumption operation and standard mass production.

2.1.2. Electrochemical Actuation

Electrochemical microvalves are considered as a highly integrated component with very low dead
volume and power requirements. Embedding in a microfluidic network can be readily accomplished,
owing to its out-of-plane architecture that allows monolithic fabrication of the valve and the surrounding
microfluidic network. The valve features a compact actuator, negligible footprint, and mass-production
capabilities. These characteristics make the valve particularly suited for lab-on-a-chip applications [37].

Unlike electrostatic microvalves, electrochemical microvalves use electrodes to electrolyze solution,
such as NaCl solution, to produce hydrogen bubbles [38]. Figure 3 shows two types of schematic
diagrams of the electrochemical actuated microvalve: one is the microvalve based on electrochemically
actuated SU8 cantilevers [37], the other is a microfluidic valve based on electrochemical (ECM)
actuated membrane [39]. The gas is produced by electrolysis to make the membrane deflect in the
electrochemical microvalve. The microvalve consists of an electrochemical (ECM) actuator, a flexible
polydimethylsiloxane (PDMS) membrane (or a SU8 cantilever) and a micro chamber. The actuator
has a chamber containing a redox couple in solution, and the volume of the solution is defined by the
required actuation volume of the valve cycle [37]. The ECM actuator used for the valve operation works
in potentiostatic mode. A constant voltage is applied across the working and reference electrodes while
current is manipulated. The ECM actuation is based on the reproducible production and consumption
of hydrogen bubbles at the working and auxiliary Pt electrodes because of reduction or oxidation. The
redox reactions can be represented by:

On+ + ne− ↔ Red (3)

where On+ is the oxidized and Red is the reduced form of the redox couple, and n is the number of
electrons involved in the reaction. The equilibrium potential is given by the Nernst equation:

Ee = E0 +
RT
NF
· ln

Co

CR
(4)

where E0 is the standard redox potential; N is the mole number; F is Faraday’s constant; R is the
universal gas constant; T is temperature of the solution; and Co and CR are the concentrations of
oxidized and reduced components, respectively [39]. The electrochemical nature of the actuator allows
for precise control of the valve diaphragm by controlling the actuation voltage. Actuation is achieved
when the system is perturbed from the equilibrium potential resulting in either bubble formation
or consumption.

A low power, low dead volume electrochemical microvalve could realize precise control of
diaphragm motion by changing actuation voltage [38]. The prototype one could be driven by AAAA
battery, and it resisted high backpressure (5 psi) and could be operated for a long time (10 h). The
valve was suitable for mass production by molding, and was applied to a small size drug delivery
device. Ezkerra et al. introduced a microvalve with the electrochemical actuated SU8 cantilever for
lab-on-a-chip applications [37]. The main function part was an actuator with two electrodes, which
produced bubbles to push the cantilever for preventing the flow of fluid. Effective sealing with
negligible leakage could be achieved up to 20 kPa in this valve. Lee et al. showed an electrochemical
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microvalve which was manufactured by UV-LIGA microfabrication technologies [39]. The nano
particles coated on the working electrode were benefit for faster reversible electrolysis and faster valve
operation. From experiment results, 300 µm deflection of valve membrane was achieved when the bias
voltage was −1.5 V, and the operation speed of this valve should be improved in the future.
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Figure 3. Two types of schematic diagrams of electrochemical actuated microvalves. (a) A
microvalve based on electrochemically actuated SU8 cantilever [37]; (b) A microfluidic valve based on
electrochemical (ECM) actuated membrane [39].

2.1.3. Piezoelectric Actuation

When piezoelectric actuation is utilized in microvalves, it can produce big bending force (several
MPa) and small displacements. The response time of it is relatively small. The crystal inside the valve
can produce mechanical stress or stretching with an applied electric field. The voltage is large, but the
membrane only takes the place of a small deviation. Although large force is available using piezoelectric
actuators, a large stroke is a challenging issue even for large voltages, and the shortcomings of small
strokes have been overcome by the hydraulic amplification of stacked piezoelectric discs and piezo
bimorphs. There are many different structures of piezoelectric microvalves, which are displayed in
Figure 4. They all consisted of the piezoactuator (the piezoelectric vibrator) [40], the valve membrane
(the valve plate or flexible valve stopper) and valve seat [41]. Further, SEM photographs of components
in piezoelectric microvalves are shown in Figure 5. The most important component in the piezoelectric
microvalve is the piezoactuator, which can be called the PZT stack [42]. Specifications of a typical
piezoactuator are listed in Table 1.
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Table 1. Piezoactuator specifications [41].

Stroke Stiffness Dimensions Material Unloaded Resonant
Frequency

Block Force
Estimate

80 µm 0.5 N·µm−1 8 × 10 × 17 mm3 Stainless steel
amplification frame 1700 Hz 40 N

Take the normally-closed piezoelectric microvalve with flexible stopper as an example, the
mechanical model of the piezoelectric microvalve is built to understand the working principle of it [40].
The drive force and the vibration of valve stopper can be expressed:

F(t) = F0 sinωt = m
..
X + c

.
X + KX (5)

where F(t) is the force of mass block, F0 is maximum output force of piezoelectric vibrator, m is the
equivalent mass of flexible valve plug and additional fluid, K is the equivalent rigidity of the flexible
valve stopper, c is the equivalent damping modulus which is produced by the interaction between the
flexible valve stopper and the fluid.

Setting the steady state response of valve stopper is:

Xp(t) = Av sin(ωt−φ) (6)

where Av is the amplitude of valve stopper and Φ is phase shift, which are expressed as

Av(ω) =
F0

m
1√[

1−
(
ω
ωn

)]2
+

[
2ζ

(
ω
ωn

)]2
(7)

φ(ω) = arctan
2ζ

(
ω
ωn

)
1−

(
ω
ωn

)2 (8)

F0 = U0G (9)

ωn =
√

K/m (10)
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ζ= c/2
√

m/K (11)

where ωn is natural frequency with no damping, ζ is the damping factor, U0 is the amplitude of driving
voltage, and G is the constant which is related to the material and structure of the piezoelectric vibrator.

When the driving frequency is constant, the response amplitude of the valve stopper Av increases
with U0 increasing. Because the driving frequency of the piezoelectric vibrator is 0–250 Hz, it is
much smaller than the fundamental frequency of the piezoelectric vibrator, so the amplitude of the
piezoelectric vibrator can be expressed as:

Ap = U0H (12)

where Ap is amplitude of piezoelectric vibrator and H is the constant which is related to the material and
installation method of the piezoelectric vibrator. Combined, Equations (7), (9) and (12), the hydraulic
amplification ratio can be expressed as

RA =
Av(ω)

Ap
=

G
Hm

1√[
1−

(
ω
ωn

)]2
+

[
2ζ

(
ω
ωn

)]2
(13)

From Equation (13), when the micro-valve is driven by sine wave voltage, the amplification ratio
RA will increase with the decrease of the gap between ω and ωn. Further, RA reaches the maximum
when the driving frequency ω is the same as the nature frequency ωn [40].

The dispensing behavior of the piezo-actuated micro dispensing valve was researched by
simulation and experiments [45]. The purpose of research was to make sure that the valve had the
large working range, and kept a high precision. The results revealed that when the opening time was
shorter than 10 ms, the transient behavior after valve opening strongly effected the time. The group
of Fazal developed a novel normally open piezoelectric microvalve based on the concepts of micro
and fine machining [46,47]. The design of valve realized a wide control range of high-pressure gas
flow, when the pressure difference between inlet and outlet was high. The advantages of this valve
included low power consumption, continuous control and precise control. Groen et al. presented a
new type of piezo-actuated microvalve combining with capacitive displacement sensing [43]. The main
manufacturing methods of it were one release etch and deep reactive ion etching (DRIE). The device
was used to monitor arterial blood pressure waveform. Various microvalves have been developed to
control the flow rate of propellants in the micro-satellites, and Lv and Zhang proposed a piezoelectric
microvalve based on a microfabricated silicon valve seat. As shown in Figure 6, the silicon seat was
deposited with parylene, so the valve seat could meet the sealing requirement after 105 cycle operations
and improve its fatigue performance. A flexure-hinged frame and the piezoelectric actuator could
make sure that the valve realized rapid adjustment. A silicon sealing pair guaranteed the low degree
of leakage and a small geometrical deformation in the valve [44,47]. Yang et al. studied a novel
piezoelectric microvalve with many tight seating rings to ensure the low leakage. The valve was mainly
used to proportionally control liquid flow, and the model was simulated by CFD to predict the flow
field. This valve technology was likely to utilize in the precise control for large spaceship [48].

As for a distributed cooling system in cryogenic applications, the group of Park proposed a
piezoelectric microvalve with embedded sensors for flow control. The valve comprised a piezoelectric
stack actuator, the ceramic encapsulation, a silicon-on-insulator wafer and a glass wafer. When the
operation temperature was 80–380 K, the valve could function normally as designed, and sensors
also worked well in this range. Moreover, they also studied the performances of different types
of gases using the designed valve, in conditions of low and room temperature. The experiment
data agreed well with the result of simulation [42,49–51]. Rakotondrabe et al. presented a novel
piezoelectric microvalve combining with an unimorph bending cantilever. The function of this device
was smooth and rapid control for fluid flow. Based on some simplifying hypothesis like ideal fluid
and so on, the physical model of the valve was established to research dynamic behavior of it [52].
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Ramanamurthy et al. reported a normally-closed piezoelectric microvalve fabricated by surface
micromachining, molding and diaphragm transfer (AMANDA) process. A mechanical clamp was
used to link unimorph and actuator for ensuring the dependability of the valve [53]. Scheuenpflug et al.
developed a diaphragm microvalve based on piezo-actuation, which was manufactured by a rapid
prototyping method. Whatever the media was, liquid or gas, the valve had a high flowing rate and a
low degree of leakage. As a passive module, the valve could be integrated with a microfluldic system,
like the production of radiopharmaceutical drugs [54]. Wiederkehr et al. introduced a microvalve
based on piezoelectric poly(vinylidene fluoride) (PVDF) to control the gas flow. The device consisted
of a glass micronozzle and a piezoelectric actuator formed by two PVDF sheets. When DC voltage
was applied to the electrodes of actuator, the whole device could be adjusted, and it was utilized in
the application of precise control [55]. Wu et al. studied a piezoelectrical polymer microvalve, which
can realize hydraulic amplification. The main innovative points in this valve were that choosing an
incompressible elastomer as the medium was the most important thing to change from tiny axial
displacement to obvious valve head stroke, and the axial structure of the valve made it possible to
form valve arrays [56].
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diagram of the 3D geometry model of the frame; (c) The cross-sectional view of the valve body.

Comparisons of three types of electrically actuated microvalves are shown in Table 2. The high
voltage is applied to the microvalve related with electricity. The response times of these microvalves
are mostly short. Because the power of these microvalves comes from electricity, it is convenient
to operate these valves. Electrical microvalves have a lot of advantages, including satisfactory
particle tolerance and low cost, so the valves are widely applied to many fields, like lab-on-a-chip
applications, microfluidic devices, direct methanol fuel cell (DMFC) systems, drug delivery system,
and even micro-satellites.

Table 2. Comparisons of three types of electrically actuated microvalves.

Type Component Advantage Disadvantage Application

Electrostatic Electrodes;
membrane

Low energy
consumption;

rapid response;
High applied voltage

high pressure gas
control; chip;

direct methanol
fuel cell systems

Electrochemical ECM; valve
diaphragm Precise adjustment Complex structure; slow

operation speed
Lab-on-a-chip;

microfluidic system

Piezoelectric Crystal, membrane
Large driving force;
rapid response; high
tolerance; low cost

High applied voltage;
Drug delivery

system;
micro-satellites
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2.2. Magnetism Actuation

2.2.1. Magnetic Actuation

A typical magnetic microvalve contains a permanent magnet and the flexible elastic membrane
with the soft magnetic material. The deflection of the membrane is caused by the magnetic forces.
Thus, this kind of microvalve only needs less external energy consumption, and they all belong to
externally actuated microvalves. To increase magnetic force in the valve, the movable membrane can be
integrated with coils. Two different structures of magnetic microvalves are displayed in Figure 7, which
showed that the working principle of the magnetic microvalve is simple. Magnetic cantilever beam [57]
and magnetic bead [58] are utilized to control microchannel (on/off switching) in the valve, and
magnetorheological (MR) fluids micropatterned on top of a PDMS membrane controls the deformation
of the membrane under the action of the magnet [59]. Different locations of the magnet define the
deflection direction of the membrane and the deflection of the membrane caused by the magnetic force
opens or closes the flow channel in the valve. Magnetic actuation simplifies the structure design and
reduces components. The operation could be controlled remotely by magnetic fields in some magnetic
microvalves. This ensures the safety of operators for some operation of dangerous substances. Due
to the fact that the flow channel cannot be completely closed under the action of magnetic force, the
biggest shortcoming of this microvalve is the leakage.
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Figure 7. Schematics of two magnetic microvalves: (a) an externally magnetic ON/OFF microvalve [57];
(b) a magnetic microvalve based on MR fluid [58].

Many scientists propose different magnetic materials for magnetic microvalves to adapt the
different application conditions. As common magnetic materials, Fe, Co, and Ni are widely used in the
magnetic microvalve. Other paramagnetic materials are sometimes also added in the core component
of the valve. The group of Casals-Terre analyzed an electrodeposited layer of Co-Ni on a V-shaped
cantilever beam, which was used in a magnetic microvalve based on a permanent magnet [57,60]. The
valve could be used as a check-valve to control the N2 flow at the flow rate of 20 sccm. In Figure 8, the
experimental set-up of this microvalve showed that the gas flow direction was from the bottom to
the top.
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Using a paramagnetic bead etched into a substrate of silicon, Chang et al. presented a novel
magnetic microvalve. The principle of the whole device was that beads under the valve were
magnetized by a permanent magnet to realize bidirectional actuation and decreased required current.
Low energy consumption and the simple scalable structure are main advantages of the valve [59].
Okazaki et al. investigated a micro-gas valve adopting a magnetostrictive actuator comprised Fe-Pd
and Fe-Ga alloys. By applying a magnetic field parallel to length, the cantilever-type actuator was bent.
The valve changed the gas flow rate by adjusting magnetic field strength and the actuator was suitable
for application in microfluidic devices [61]. Viard et al. introduced a MEMS magnetic microvalve
consisting of a magnetostatic actuator and a packaging, allowing for accurate positioning. The valve
was used to provide pulsed jets whose frequency range could change from 0 to 500 Hz, and the velocity
of flow could reach 150 m/s. The device satisfied the requirements of aeronautic flow control tests [62].

As for membranes, they would be magnetized or added magnetic materials for operation in
the magnetic field. Most membranes were PDMS membranes, and a magnetic microvalve utilizing
iron-powder filled PDMS was proposed by Cheng et al. The valve was adjusted by transcutaneous
control, and did not need any additional power source, just a magnet. The device was mainly applied to
implantable drug delivery system, and a pressurized balloon reservoir was used to pump the drug [63].
According to Gholizadeh et al., the elastomeric membranes of the magnetic microfluidic valve based on
magnetorheological fluids did not need to be reprocessed [58]. Polymer microfabrication technologies
were used to fabricate the microvalve, which had plenty of advantages, such as simple fabrication,
small size, and no power source. The device was suitable for the portable analytical equipment.

2.2.2. Electromagnetic Actuation

The difference between the magnetic actuation and the electromagnetic actuation is the source
of the magnetic field. One uses magnetic field and the other uses electromagnetic field. Compared
with the magnetic field from the magnet, the electromagnetic field needs external electric energy and
strength of it can be controlled by the current intensity, causing the operation of the valve can be more
precise. Electromagnetic valve is also an industrial device with electromagnetic control, which is the
basic element of automation used to control fluids. Through controlling the switching (on/off) of the
electromagnets, the direction of flow could be adjusted. The differences between the two types of
magnetic actuated microvalves are shown in Table 3.
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Table 3. Comparison of two types of magnetism driven microvalves.

Type Components Advantages Disadvantages Applications

Magnetic

Permanent magnet;
elastic membrane

with soft magnetic
material

No energy consumption;
simple structure; remote

operation
Leakage

Microfluidic device;
aeronautic flow

control tests

Electromagnetic Electromagnet High precise control;
rapid response

High energy
consumption Lab-on-a-chip

Many precise industrial devices need electromagnetic microvalves, like pneumatic pressure control
in the lab-on-a-chip [64]. The advantages of this kind of microvalve, including rapid response and high
precise control, satisfy most of industry requirements. The core component of some electromagnetic
microvalves is the plunger electro-magnet [65]. FLUENT software with the function of UDF was
used to simulate the flow field under the function of electromagnetic fields. Wu et al. researched a
novel microvalve based on four electromagnets and magnetic fluid, and simulation results showed
that performances of 40 mT magnetic field were the best [66]. Burke et al. developed an in-channel
magnetic microfluidic system including a microvalve. Combining the permanent magnet with micro
scale coils produced a relatively huge magnetic field force, and it placed the magnetic actuator in the
fluid channel [67].

There is a special electromagnetic microvalve, which is based on the ferrofluid. Ferrofluids are
magnetic liquids created by suspending ferromagnetic particles of 10 nm in a carrier fluid. Carrier
fluids can be water, diesters, hydrocarbons or fluorocarbons and favor many different applications.
Ferrofluids conform to the channel shape, potentially providing very good seals, and respond to
external localized magnetic forces, providing easy actuation. The structure and the working principle
of an electromagnetically actuated microvalve based on ferrofluid is shown in Figure 9 [68]. Ferrofluid
controlled the deflection of the membrane to adjust fluid flow.
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Furthermore, the group of Luharuka presented a bistable electromagnetically actuated rotary gate
microvalve based on a suspended gate to adjust flow. An in-plane rotary bistable micromechanism
(IPRBM) was used in the gate to constrain its degrees of freedom. The outer electromagnetic actuator
was applied to control the valves. Utilizing a Polytec Laser Doppler Vibrometer (LDV) system
could acquire the vertical displacement of membrane [69,70]. Kawakami et al. developed a novel
electromagnetic actuated sliding valve, which had performances of resisting alkali and acid [71].
Materials and coatings with resistance to acid and alkali were utilized in the valve, and the valve was
applied to a “micro beaker process” for realizing even reactions.
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2.3. Gas Actuation

2.3.1. Pneumatic Actuation

As an important type of microvalves, pneumatic microvalves are widely worked as key components
for automating liquid manipulation and flow control in microfluidics. In comparison with other
microvalves, this needs an external system, which contains a vacuum pump and a pneumatic actuator.
Pneumatic actuators have been applied to various robotic systems, owing to their relatively high
power-to-weight ratios [72]. The membrane is also one of the most critical parts of the pneumatic
microvalve, such as PDMS layer, silicon membrane, and silicone rubber sheets. These flexible
membranes can be deformed by pneumatic actuation, for closing or opening the fluidic channel of the
corresponding valve. The operation of the pneumatic microchannel actuator makes the thin membrane
bend, resulting in the bending of the liquid microchannel and its closure. Due to inadequate actuation
pressure or a thick membrane, the response of the valve would become slow. Undue actuation pressure
will make the restoring time of the membrane longer [73]. The membrane thickness, actuation pressure,
the configuration, the level of structural complexity and the position of the microvalve in the device
influence the dynamics of microvalves. Pneumatic valves based on the compressed air can also be used
industrially to control the flow of various types of fluids such as air, water, steam, various corrosive
media, muds, oils, liquid metals and radioactive media. An overview of design principles of pneumatic
microvalves is given in Table 4 specifying opening and closing pressures [74]. A simple design is given
when two crossing channels of which one is pressurized to close the other (No.3) are implemented. For
full sealing, rounded fluidic channels are required, which is challenging in microproduction technology.
To avoid the need for rounded channels, more complicated valves have been designed, but they require
additional material layers (No.2). Improved designs are published with reduced complexity and
number of layers (No.1).

Because of the simple structure and low cost, the pneumatic microvalve is applied to many
applications including microfluidic circuits design [75], fuel cell systems [78], mix and sort droplets [79,
80], rapid hydrodynamic sample injection [81] and so on. What is more, due to the ease of fabrication and
robust operation, microfluidic systems have been developed with the multiple pneumatic microvalves
to improve throughput and expand applications [73,80], which are shown in Figure 10.
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Table 4. Three design principles of pneumatic microvalves. The marking LC stands for liquid channel, P is for pressure, indicating the volume where the pressure for
opening or closing is applied, cross-hatch is a PDMS layer, diagonal-hatch glass or thermoplastic layers [74].

No Design Principle Reference Structure
Pressure (kPa)

Open Close

1
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A microfluidic platform including a pneumatic microvalve could complete electrokinetic sample
preconcentration and rapid hydrodynamic sample injection [81]. The valve was fabricated by multilayer
soft lithography method to work as a nanochannel preconcentrator, which was used to make the
current pass through and hold back flow. This method enabled both rapid analyte concentration and
controlled injection volume for high sensitivity. A small-sized pneumatic valve was applied to drive
actuator in the wearable robotic system [72]. The most important advantage of valve was light, and
the application of it could make the system perform better. For patients whose eyes were impaired,
Schneider et al. designed a new grayscale pneumatic microvalve for a reconfigurable tactile tablet. The
combination between device and voltage could make tablet generate the same grayscale images [82].
Perdigones et al. reported a pneumatic positive gain microvalve based on PCB substrate, SU-8 and gold.
Through experiments, it proved that the device could work as n-channel metal-oxide semiconductor
(NMOS). The valve was appropriate to be applied to the fluidics circuits for adjusting fluid flow and
microfluidic circuits design [75]. To realize the operation of leak proof and lower pressure damage,
Satoh et al. developed a novel microvalve for controlling liquefied gas, whose pneumatic actuation
was controlled by two electrostatic sub-valves [78].

In microfluidic systems, the pneumatic microvalve not only is used to merge droplets, but also is
applied to sort droplets. The device plays an important role in chemical and biological applications. The
device has numerous advantages like high precision and flexible manipulation. A pneumatic horizontal
PDMS microvalve was proposed for the droplet merging system [79]. Changing flow resistances of
main and side channels could adjust the number and diameter of droplets. The device solved the
desynchronization problems, and it could be applied to efficiently mix the droplets in various diameters
and numbers without changing the structure of the merging chamber. Chen et al. investigated a sorting
droplets microfluidic system based on the bilayer pneumatic microvalve. Because light absorbance
of every type droplet was different, changing intensity of light was applied to transfer the droplet to
different outlet channels. The current microfluidic systems only needed some modification of structure
for achieving droplet sorting function by this sorting method [80].

Many pneumatic microvalves have multiple-layer structures to adapt to complex conditions.
Different manufacture method and materials are used to fabricate the devices. A pneumatically
controllable PDMS-based microvalve was utilized to regulate switching of flow using the thick centered
membrane, and the valve consisted of the pneumatic layer, the membrane layer, the hole layer and the
bas-relief plate [76]. Huang et al. described a novel technology to manufacture a pneumatic microvalve
based on the four-layer structure. The connection between the PDMS membrane and the rigid substrate
of PMMA ensured the bonding strength to endure high pressure conditions, and the sealing between
the control half and the fluid half was reversible [83]. The design not only obviously reduced the time
of analysis, but also cut down the cost. A typical three-layer structure pneumatic microvalve was
manufactured using inclined lithography method [84]. As shown in Figure 11, the valve comprised a
liquid microchannel layer, a thin PDMS membrane layer and a pneumatic microchannel layer (actuator).
The liquid channel had a parallelogram-shaped cross section with 500 µm width and 100 µm height.
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The device was used to convey large cells, such as HeLa cells. Through observing the suspension of
the flow of the HeLa cell, it demonstrated the closure of the liquid microchannel. A novel push-down
pneumatic microvalve was developed by Park et al., which was is useful in electrochemical microfluidic
devices. The bonding material was a mixture of PDMS and hexane. The prototypical device based on
proposed fabrication process was proved that it had better performance of valve operation [85].
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The pneumatic microvalve also has some shortcomings, such as gas penetration through PDMS
membrane. There are two methods avoiding intrusion of gas into the microfluidic channels through
PDMS membrane [74]. The first one used an oil droplet, which was placed in the dead end of the
pneumatic channel, and it made the microvalve have better sealing capabilities and suppressed the
permeability of the valve completely. The second one was based on a parylene coating to make PDMS
impermeable to gases. Samuel et al. reported a manufacture method about pneumatic actuated
microvalve arrays based on PDMS. Utilizing laser cut molds, the valve could be fabricated easily and
rapidly. The method was also introduced to the device which was used to manipulate C. elegans [77].
Singh et al. presented a helical pneumatic solenoid micro-valve, which was used to analyze body flow
behavior. Through experiments and numerical simulations, when the flow rate was 0.01 mL/h, the
valve could block the flow [86].

2.3.2. Thermopneumatic Actuation

Unlike the pneumatic microvalves, the key component of the thermopneumatic microvalve is
a microheater. As shown in Table 5, thermopneumatic microvalves are widely used in many fields,
such as portable SU-8 microfluidic platforms [87], liquid flow control [88], microfluidic chip [89]
and so on. A thermopneumatic microvalve consisted of inlet and outlet, an actuation diaphragm,
a thermopneumatic actuation chamber, and a thin film heater. In microchannel, fluid is blocked or
passed by the motion of actuation diaphragm. Actuation diaphragm is bent up and down by exploiting
air expansion that is induced by increasing heater temperature. Figure 12 shows the structure of the
thermopneumatic microvalve. Many thermopneumatic actuators are thermoelectrically driven. The
phase change liquid could replace the air in the thermopneumatic actuation chamber [90].
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Mongpraneet et al. researched a thermopneumatic microvalve consisted of multi-stack PDMS.
Fluid flow was controlled through the membrane motion, which was depended on air expansion with
heater temperature rising [89]. Many low-cost fabrication processes were applied to this microvalve,
like PDMS spinning, oxygen plasma bonding, electroplated micromasking, and thermal evaporation.
Perdigones et al. proposed a novel microvalve based on thermo-pneumatic actuation for portable SU-8
microfluidic platforms. The device included two parts, one was a thin SU-8 wall with a gold wire,
another one was a pressurized chamber of SU-8. The main advantages of this type valve were getting
rid of pressure sources for actuation from outside, low energy consumption and high integrability [87].
Based on the valve plate position sensing and the electrostatic control, a novel thermopneumatic
microvalve was introduced by Potkay et al. The small size of the valve (7.5 × 10.3 × 1.5 mm) and low
energy consumption was its main advantage [91].

Some bistable microvalves adopting thermopneumatical actuation were also proposed. The
bistable microvalve means that the state of the valve is only opening or closing. A drawback of
typical active microvalves is that continuous power has to be applied to keep the microvalves open in
normally closed microvalves or closed in normally open microvalves. This problem can be solved by
bistable actuations that require power only in a transient mode between two stable positions. Thermal
buckling of membranes is widely utilized in bistable microvalves. Yang et al. researched a bistable
microvalve adopting thermopneumatical actuation, utilizing the fabrication method of sputtering
and photolithography [92]. The bistable switching condition was realized through a moving soft
magnet and two permanent magnets. The results showed that the heating membrane thickness effected
switching time a lot, and no leakage was observed up to a differential pressure of 350 kPa. Based on a
thermoelectrically actuated thermopneumatic actuator, another bistable microvalve was manufactured
by silicon technology [88]. When back pressure was 150 kPa, the leakage rate would be lower than
1 µL/min. Controlling the valve only needed fairly low energy cost.



Micromachines 2020, 11, 172 18 of 38

Table 5. Summary of microvalves based on pneumatic actuation and thermopneumatic actuation. P: Pneumatic; TP: Thermopneumatic.

Reference Year Type Material Medium Fabrication Application Advantages

Shinichi et al. [72] 2015 P Air flow Wearable Robotic
Systems Light

Perdigones et al. [75] 2011 P SU-8, gold Gas Post-exposure bake
(PEB), BETTS process

Flow control,
microfluidic circuits

design

Satoh et al. [78] 2008 P Pyrex glass; silicon Liquefied gases
Sandblasting, anodic
bonding, long EPW

etching
Liquefied gas control

High pressure leak
tolerance, low
pressure loss

Jamshaid et al. [79] 2013 P PDMS, SU-8 The continuous
flow (oil)

Standard soft
lithographic technique Droplet merging system

No
desynchronization

problem

Chen et al. [80] 2016 P PDMS Oil, water Microfluidic droplets
sorting

Cong et al. [81] 2016 P PDMS hydrodynamic
sample

Multilayer soft
lithography

Microchip
electrophoresis

Rapid analyte
concentration,

high sensitivity

Schneider et al. [82] 2015 P

a Si-C (silicon carbide)
bottom electrode,

aluminum amorphous
silicon

Gas
Reactive Ion Etching

(RIE), Deep Reactive Ion
Etching (DRIE)

Reconfgurable tactile
tablet for

vision-impaired
individuals

Huang et al. [83] 2012 P PDMS, PMMA Hot embossing,
irreversible bonding

Droplet generation,
micro flow injection

analysis
Reversible sealing

Kaminaga et al. [84] 2016 P PDMS, SU-8, Si The flow of the
HeLa cell

Inclined lithography
method Conveying large cells

Park et al. [85] 2012 P
PDMS, hardener,

silicon wafers, gold
microelectrode

Peel, punch, spincoat Electrochemical
microfluidic devices

Perdigones et al. [87] 2014 TP
Flame Retardant 4,
copper, gold wire,

SU-8, PDMS
Fluid Post exposure bake

(PEB), the wet etching
Portable SU-8

Microfluidic Platforms

Independence of
external pressure

sources, high
integrability, low

consumption
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Table 5. Cont.

Reference Year Type Material Medium Fabrication Application Advantages

Huesgen et al. [88] 2010 TP Silicon Fluid flow Silicon technology Liquid flow control Low leakage rate,
low energy cost

Mongprane et al. [89] 2009 TP PDMS, microheater
(NiCr), glass Gas

PDMS spinning, oxygen
plasma bonding,

electroplated
micromasking, thermal

evaporation

Microfluidic Chip Low cost
fabrication

Aravind et al. [90] 2013 TP Phase change liquid,
PDMS, glass, silicon

Methanol,
Isopropanol

Soft lithography,
polymer processing µTAS or Lab-on-chip Precise control and

manipulate liquid

Potkay et al. [91] 2012 TP Glass, Si-glass, Au-Si Fluid

Deep boron etch-stop,
shallow isotropic etch,
NaOH electrochemical
etch, ethylene diamine

pyrocatechol (EDP) etch

Electrostatic latching Low energy
consumption

Yang et al. [92] 2010 TP
Polymer, adhesive
strip, ring magnet
(Nd-Fe-B), silicone

Gas flow Sputtering,
photolithography

No leakage, no
extra energy

supply
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2.4. Material and Biology Properties Actuation

In this section, microvalves with non-mechanical moving parts will be discussed. Due to
some special properties, many materials and creatures are used to actuate microvalves. Actuation
mechanisms of phase change materials are discussed, including polymer (hydrogel [93–96], sol-gel [97]),
paraffin [98–103], alloy (low melting point alloy [104–106] and shape memory alloy [107–112]).
Compared with the traditional mechanically active microvalves, these phase change microvalves are
relatively new and cheap. As a new type of microvalve, the working principle of the bio-actuated
microvalve is described in detail [113,114]. Because of their simple device structure, disposability, and
low power consumption, these non-mechanical active microvalves are well suited for applications in
drug delivery systems [115,116]. Table 6 shows a comparison of microvalves based on material and
biology properties.

Stimuli-responsive hydrogel (gel) is able to change its volume reversibly and reproducibly by more
than one order of magnitude even with very small alterations of certain environmental parameters.
The volume change of hydrogels can be induced in response to a variety of inputs, such as pH, glucose
and light. In the following part, mocrovalves based on hydrogel (gel) are discussed in these three
stimulus methods.

As a typical phase change material, paraffin can be used either as a propellant for a membrane
or as a meltable plug [98–103]. Since the volume expansion associated with the solid-to-liquid phase
transition of paraffin is 10%–30%, the propellant scheme can be incorporated for the deflection of
the membrane.

Metal materials are also widely used to actuate microvalves. For example, the hydrophilia of
TiO2 is utilized in the light actuated microvalves by irradiating ultraviolet (UV) [117–119]. The shape
memory effect of shape memory alloy is an attractive actuation principle for the development of
microvalves, since it allows simple and compact structures with high output forces, which are capable
of controlling high pressure differences and flows [107–112]. Due to the high sensitivity of temperature,
low melting point alloy phase changes with the change of temperature [104–106]. Its advantages,
including short manufacturing cycle and low manufacturing cost, make it an important microvalve
driving material.
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Table 6. Microvalves based on material and biology properties. NC, normally closed microvalve; NO, normally open microvalve; B, bistable; SMA, shape memory arroy.

Reference Mode Type Reversible/Irreversible Phase Change
Material/Creature

Max Pressure
(no Leakage) Time Application

Al-Aribe et al. [93,94] NO Light Reversible HEMA-AA hydrogel (pH
sensitive)

Benito-Lopez et al.
[95] NC Light Reversible Ionic liquid polymer gels

(ionogels)
Open: seconds;
Close: minutes

Microfluidic manifolds
(single-use device)

Chen et al. [96] NC Light Reversible PNIPAM gel 1350 psi Open: 4 s;
Close: 6.2 s

Manipulate flow path in
micro-total analysis

systems

Jadhav et al. [97] NC
Light (a

near-infrared
(NIR) laser)

Reversible Microgel particles
(PNIPAM)

Open: 1~2 s;
Close: 6~8 s

Liquid handling in
microfluidic devices

Kolari et al. [98] NC Paraffin Reversible

Paraffin wax mixed with a
suitable concentration of

optically absorbing
nanographite particles

2 bar
High pressure, low

volume flow silicon-based
nanofluidic systems

Yang et al. [99] NO Paraffin Reversible Paraffin wax of low melting
point 35 kPa Open: 100 s;

Close: 60 s
Flow gating in portable
lab-on-a-chip systems

Yoo et al. [100,101] NO Paraffin Reversible Thermally triggered phase
change of the paraffin

Transport of reagents and
samples for a
lab-on-a-chip

Feng et al. [102] NC Paraffin Reversible Paraffin wax 25 kPa
(backpressure)

Open: 0.125 s
Close: 3.5 s

Baek et al. [103] NC Paraffin Reversible Paraffin wax 107 kPa
Open: 1~5 s (short
intervals); 15-23 s
(long intervals)

Wireless sequentially
actuated microvalve

system

Debray et al. [104,105] NC Low melting
point alloy Irreversible

Alloy (Bi 44.7%, Pb 22.6%,
In 19.1%, Sn 8.3%, Cd 5.3%)
with a melting temperature

of 47 ◦C

200 kPa Open: 33 s One-shot micro-valve

Shaikh et al. [106] NO Low melting
point alloy Reversible

A fusible metal alloy
(Galinstan: 68.5% Ga, 21.5%
In, 10% Sn) that is liquid at

room temperature

138 kPa Open: 100 ms up
to 1 s

Portable lab-on-a-chip
devices

(low-power operation,
long-term fluid storage)

Barth and
Megnin et al. [107,108] B SMA Reversible SMA (A cold-rolled Ti-49

at.%Ni foil)
Gas (N2): 200 kPa

Water: 100 kPa 200 ms
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Table 6. Cont.

Reference Mode Type Reversible/Irreversible Phase Change
Material/Creature

Max Pressure
(no Leakage) Time Application

Gradin et al. [109] NC SMA Reversible NiTi SMA wires 200 kPa 50 ms High gas flow control

Zhang et al. [110],
Liu et al. [111] NO SMA Reversible SMA wire 35 kPa 46 s (switch)

Piezoelectric microfluidic
devices for biochemical

analysis
Nath et al. [112] NC SMA Reversible NiTi SMA 5 kPa Micro-valve array

Nagai et al. [113,114] NO Creature Reversible V. carteri (light-controlled
Volvox) 50 mmH2O 30 s Multilayer microfluidic

device

NC Creature Reversible Cells of Vorticella
convallaria

Contraction: 10.5
± 3.57 s

Extension: 24.4 ±
9.93 s

Compact and
multifunctional
microsystems

Liu et al. [115] NC

pH
(integrative
micro-valve

array)

Reversible pH-responsive
microspheres 50 kPa Open: 60 s

Close: 50 s

Drug discovery,
high-throughput

screening

Dzulkefli et al. [116] NC Glucose Reversible Glucose hydrogel Drug delivery system
(DDS)

Demir et al. [117,118] NC
Light (darkness
and ultraviolet

(UV))
Reversible TiO2 layers (wettability

conversion) 980 Pa

Guo et al. [119] NC
Light (darkness
and ultraviolet

(UV))
Reversible A trimethyl chlorosilane

(CTMS) modified TiO2/SiO2
Minutes Microscale flow control
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2.4.1. Light Actuation

The microvalves based on light actuation are also referred to as photoresponsive microvalves [94].
The light sources are divided into visible light and invisible light. The invisible light sources include
ultraviolet ray and infrared ray. The photoresponsive microvalves are comprised of the light source
and the ionic polymer. A quartz halogen illuminator with tungsten filament can be chosen as the
light source. The working principle of the microvalve is utilizing the expansion and contraction of
the ionic polymer controlled by a single light source. As an externally controlled type of microvalve,
photoresponsive microvalves have many advantages that other valves do not have. The optically
triggered microvalve permits flexible and remote fluidic handling, and the light actuation did not
need physical contact. Because the light source can be installed outside of the valve, it reduces the
complexity of the device and the need for integration. The disadvantages of the valve are also evidence
of this. Comparing with other microvalves, its opening response time, which is more than 1 s, is
relatively long. The closing response time is longer than the opening response time.

Many photoresponsive microvalves use different ionic polymers to improve the performances of
the valves. The group of Al-Aribe introduced a hydrogel microvalve activated a porous photoelectric
film. The film was used to control the expansion and contraction of a pH sensitive HEMA-AA hydrogel
actuator. The self-assembled monolayer of oriented bacteriorhodopsin (bR) purple membrane (PM)
patches were immobilized on a porous bio-functionalized gold (Au) surface. Upon irradiation, each bR
molecule worked as a proton pump to transports hydrogen ions through a transmembrane ion channel.
The results revealed that an 8 µm gap of microchannel could be closed by the valve under a focused
light beam [93,94]. Benito-Lopez et al. showed four types of ionogels (ionic liquid polymer gels)
applied to light actuated valves. The variation of composition of the ionogels influenced the opening
time of the microvalve. The experiment results revealed that the recovery (expansion) process to
re-close the channel needed a few minutes, so the microvalve was suited for single-actuation events [95].
Chen et al. reported a light actuated microvalve bearing high leakage pressure. The microvalve
based on poly(N-isopropylacrylamide) (PNIPAM) functioned well in cyclic olefin copolymer (COC)
microchip. As the thermo-responsive polymer, the pressure-tolerance of PNIPAM could be tuned with
the amount of monomer and crosslinker. The microchips with valve were very practical in chemical
analysis and proteomic analysis [96].

As mentioned above, the invisible lights including ultraviolet ray and infrared ray are also used
to actuate the photoresponsive microvalves, and the light sources should choose some specialized
light emitting devices. Jadhav et al. presented a novel photoresponsive hydrogel microvlave. The
actuation principle was that the gel changed the volume by the near-infrared laser irradiation, and
then the valve realized precise fluid on/off switching [97]. Figure 13 showed the operation of the valve
and SEM of photoresponsive hydrogel. The irradiation power and time controlled the valve response
speed and duration time. The proposed valve was suitable for fast fluidic switching applications.

Demir et al. presented a microvalve actuated by darkness and UV irradiation. The wettability
conversion was used to adjust pressure drop in the capillary channels for switching two states (On/Off).
The titanium microchannel was fabricated by the laser microdrilling, and chemical etching was
applied to clear the remaining spatter for ensuring the quality of the hole [117,118]. The pressure
drop could be increased by very small microchannel diameters and extreme values of the contact
angle (i.e., 0◦ and 180◦). Figure 14 showed schematic of UV/dark actuated wettability conversion
in the TiO2/SiO2 composite surface of the microvalve [119]. The most important part of the valve
was the novel micro-nano hierarchical structure, which could enhance the valve performances. The
valve tests including reversible and repeated operations proved that the valve was good at adjusting
microscale flow.
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(a) Off status and hydrophobic composite structure before UV irradiation; (b) On status and hydrophilic
composite structure after UV irradiation.

2.4.2. pH-Sensitive Actuation

As the soft material, hydrogels can undergo large deformation when they are stimulated by
external force. The stimulation response of hydrogel to the change of pH value is used to fabricate
the pH-sensitive microvalve. According to Figure 15, it is obvious that pH value is used to control
microvalves by changing the volume of the pH-sensitive hydrogel. When the pH-sensitive hydrogel
is in an alkaline environment, its volume will swell correspondingly. Arbabi et al. investigated
a novel pH-sensitive microvalve based on a hydrogel jacket. The effects of different parameters,
including inlet pressure, pH value and jacket patterns, were analyzed by fluid-structure interaction
simulations, which were found to be important to accurate design of this microvalve [120]. Further,
pH-responsive microvlaves could also be made into a valve-array for drug discovery [115]. The
technology of photo-polymerization called “on the fly” was used to fabricate the device, and it had
good performances through tests. The advantages of the valve array were obvious, like high-density
distribution, no electrical modules, and so on.
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2.4.3. Glucose-Sensitive Actuation

The glucose-sensitive microvalve is suitable for the drug delivery system in human body, especially
the patients with diabetes. A glucose-sensitive actuator applied to the microvalve was invented for the
drug delivery system [116]. The microchannel is essential to carry liquid samples in the system, and
two types of microchannel, rectangular and trapezoidal, were fabricated using anisotropic etching of
deep-RIE and wet chemical etching, respectively. Through this microvalve, the insulin could be released
cordially to human body automatically based on the glucose concentration. This hydrogel-actuated
microvalve responded to the changes in the concentration of glucose in an external liquid environment.

2.4.4. Paraffin Phase Transition Actuation

Because of the low melting point, paraffin wax can easily complete phase transition by heating.
The microvalve exploits paraffin wax of low melting point, whose solid-liquid phase changes allow
the closing and opening of fluid flow through deformable microchannel membrane. Valve switching is
controlled by melting of paraffin through heating. The thin channel ceiling of the valve separates the
fluid channel from the wax chamber, and the purpose is ensuring the fluid in the channel being free of
contamination by the paraffin wax. This kind of microvalve needs a micro chamber to store the paraffin
wax and a micro heater to heat it. The response times of opening and closing are relatively slow.

A silicon membrane optically driven restrictor microvalve was based on the paraffin mixed
with optically absorbing nanographite particles [98]. The paraffin composite as an adhesive layer
sandwiched between the silicon valve and the glass. The device was appropriate for high pressure
and low volume flow applications. Yang et al. established a new latchable phase change microvalve
utilizing paraffin wax. The channel of flow was controlled by solid-liquid phase changes of paraffin
wax, and only valve switching process needed low power consumption for producing pneumatic
pressure and heating [99]. Moreover, the proposed structure made the valve have good leakproofness,
and isolated the flow channel from the chamber of wax by the channel ceiling. Although the switched
state was maintained after paraffin solidified without further energy consumption, the response time
of closing or opening was more than 60 s. The group of Yoo introduced a microfluidic system including
a paraffin actuated microvalve and a thermopneumatic micropump for a micrototal analysis system
and lab-on-a-chip. The material of the device contained PDMS-glass chip and an indium tin oxide
(ITO) heater. This system realized accurate fluidic control, cost effectiveness, and portability [100,101].
A normally closed paraffin-actuated microvalve consisted of an elastic blockade and a fast heating
microheater [102]. Micro-bulges were produced by the volume expansion of paraffin wax inside the
microheater. As shown in Figure 16, the protruding micro-bulges produced by phase change of paraffin
wax lifted the valve blockade, allowing fluid to pass. The valve was capable of realizing rapid switch-on,
just 0.125 s, under a 3 V battery-powered supply. Baek et al. established a wireless microvalve system.
Programmable opening of valves was designed by using different thermal responses of metal discs
to a magnetic field. The discs as heating elements, controlled by induction heating, heated the flow
plug (paraffin wax) to adjust fluid flow. The system was proved that it was inexpensive and easy to
manipulate [103].
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2.4.5. Metal Phase Transition Actuation

Low Melting Point Alloy

Low melting point alloy can be seen as the phase change material, and the melting temperature of
it is relatively low. Some metal alloy pieces liquefy when they are heated above 62 ◦C. Indium-bismuth
(In-Bi) and tin-lead (Sn-Pb) are typical low melting point alloys. A thin-film metal heater could be
integrated into the device to provide localized heating. This kind of alloy is widely used in the
one-shot microvalve, which means the valve is single use. Debray et al. developed a one-shot valve
including a membrane coated with a low melting point alloy. The microvalve adopted the suspended
metallic structure, and the manipulation of the valve depended on surroundings temperature and
pressure [104,105]. As a normally closed microvalve, the valve opened when the ambient temperature
was higher than the alloy melting temperature. What is more, the opening pressure difference across
the channel was fairly low. The microvalve could be also opened if the pressure difference was such as
to fracture the membrane in Figure 17. Manginell et al. focused on the materials about the phase-change
microvalve for greenhouse gas (GHG) sampling. They proposed the low-melting-point eutectic metal
alloys, which could be melted at 72 ◦C. As a low power, low weight, and low-cost alloy, this material
decreased the leakage rate of the valve, and the device could be stored for a long time (2.8 years) [29].
Shaikh et al. presented a latchable microvalve using low melting point alloy to hold the valve in
place when latched. Choosing metal alloy as the structural support instead of paraffin wax, etc, could
guarantee the valve that had a higher burst pressure. The valve did not need extra power, and it was
suitable for low-power portable lab-on-a-chip applications and long-term fluid storage [106].
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Shape Memory Alloy (SMA)

Shape memory alloy (SMA), which consists of two or more metallic elements, has shape memory
effect (SME). SMA is the best shape memory material at present. The main function of it is that the
deformation of it at low temperature is eliminated by heating. Therefore, this kind of material has
a wide range of applications in clinical medical field. SMA is widely used to fabricate microvalves.
Ni-Ti shape memory alloy is used in some microvalves, and the shape memory alloy wire actuator
provides robust flow control at a high pressure drop. The manufacture method of SMA is similar to
the ordinary alloy, including melting, mechanical alloying, sintering, and vapor deposition. Further,
SMA has many applications and methods of operation. Take a spring made of SMA as an example,
when this spring is placed in hot water, the length of the spring is immediately extended, and then
placed in cold water, it immediately returns to its original state. SMA is widely made into fire alarms
and safety devices for electrical equipment, artificial bones, and so on.

The group of Barth and Megnin presented a bistable SMA microvalve including two counteracting
SMA microbridges and magnetic layers. Figure 18 displayed the schematic cross-section of the
three-way bistable SMA microvalve under three states, including State I, State II and switching state.
A modular layout and a novel self-aligning valve stack were important to fabricate the valve. Thus,
the high requirement on vertical alignment accuracy (1 µm) was satisfied. Furthermore, another
bisTable 3/2-way SMA microvalve realizing the bi-directional switching was proposed. The magnetic
retaining system of the valve provided large adjustable pressure differences range and a low leakage
rate. The valve could bore a pressure difference up to 200 kPa for gas (N2) and up to 100 kPa for liquid
(water), respectively [107,108]. Gradin et al. investigated a SMA wire gas microvalve, which was
suitable for high pressure high flow control [109]. Compared with the current high-flow valves in
Table 7, the proposed design was good at the robust actuator performance, low power consumption
and rapid response. The SMA wire actuator valve has more than one order of magnitude lower power
consumption than the light actuated valve [97] and has two orders of magnitude lower voltage than
the electrostatic microvalve [32] and piezoelectric microvalve [50]. The main drawback of the SMA
wire valve compared to the other valves is the high relative leakage. However, this can be addressed
by an improved design.
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Table 7. Comparison of typical high flow microvalves.

Reference Type Medium
Leakage

(Relative or
Absolute)

Power
Consumption Voltage Response Time

Bae et al. [31] ES Gas 0 140 V 50 µs
Dankovic et al. [33] ES Gas 7.14% (max) 350 V
Fazal et al. [41,46] PE Gas 0 low 2.5 V

Park et al. [50] PE Gas 0 0.16 µW 60 V 0.7 ms
Wiederkehr et al. [55] PE Gas 300 V~−200 V

Huesgen et al. [88] TP Liquid 1 µL/min 1 J (close);
2 J (open)

Close: 80 ms to
160 ms;

Open: 240 ms to
400 ms

Jadhav et al. [97] Light Liquid 0 2.5 W Open: 1–2 s;
Close: 6–8 s

Guo et al. [119] Light Liquid 0 Minutes
Megnin et al. [108] SMA Gas/Liquid <10 µL/min 60 mW 20 ms

Gradin et al. [109] SMA Gas
50%–70%

(<10%
possible)

90 mW 0.6 V 50 ms

ES, electrostatic; PE, piezoelectric; TP, thermopneumatic; SMA, shape memory alloy.

Two types of microvalves based on surface acoustic wave (SAW) were presented by Zhang et al.
and Liu et al. They all comprised of the SMA wire and opening or closing of the valve was controlled
by SAW, but their working principles are different. These two microvalves could be utilized in
piezoelectric microfluidic devices for biochemical analysis [110,111]. Nath et al. researched a SMA
microvalve based on laser actuation. As a contactless type, the laser was a low power density source,
which was suitable to be chosen as actuation medium. The array of this type microvalve for flow
control on macroscopic level was also presented. The flow flux about the microvalve array could be
varied with opened valve number [112]. The comparison between low melting point alloy and SMA is
displayed in Table 8. Based on the change of temperature, the state of the two alloys both also change:
one undergoes the phase change and the other undergoes the deformation. Therefore, according to
their respective characteristics, the former is mainly used for one-shot microvalves, and the latter is
mainly used for the field of biomedicine.

Table 8. Comparison of different metal materials applied to microvalves.

Type Materials Characteristics Typical Application

Low melting point alloy In-Bi;
Sn-Pb T > 62 ◦C: liquidation One-shot microvalve (single use);

greenhouse gas (GHG) sampling

SMA Ni-Ti
Low temperature:

deformation;
High temperature: recover

Clinical medical field;
high pressure high flow control;

biochemical analysis

2.4.6. Biology Actuation

Microvalves based on biology actuation are rare in microfluidic systems. Some microorganisms
and bacteria are used to act as the movable microvalve element assembled in microfluidic devices.
According to Nagai et al., there is a type of a Volvox called V. carteri having phototaxisA novel
light-controlled microvalve based on Volvox actuation was displayed in Figure 19a, and the PDMS
structure of three layers with a through-hole was manufactured to satisfy the complex fabrication
process. The phototactic behavior of V. carteri and controlled its motions in a microchannel by
illuminating light. V. carteri migrated to the light source in the channel. Compared to the flow without
Volvox on the hole, the colony of V. carteri was found to stop the flow. What is more, they also presented
a Ca2+ driven bioactuator, which was the contractile fiber from the stalk of Vorticella cell. The valve
chamber was used to grow the Vorticella cell. The behavior of stalk (contraction and extension) was
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controlled by the concentration of Ca2+, and then a cell body connected to the stalk opened or closed
the micro channel. As shown in Figure 19b, vorticellas are selectively placed in chambers with channels.
The vorticellas fuse with the artificial structure to develop a 2D actuator. Then permeabilization is
performed to make the vorticellas controllable, solution containing Ca2+ is supplied, and reliable motion
control is implemented according to the Ca2+ concentration in the solution. The microvalve based on
this bioactuator was suitable for the integration and functionalization of microsystems [113,114].
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Figure 19. Schematic of two microvalves based on microorganism [113,114]: (a) V. carteri [113];
(b) Vorticella [114].

Table 9 shows the comparison of four types of microvalves based on the properties of material
and creature. Hydrogel, paraffin wax, and microorganism are used as driving sources in microvalves.
These microvalves generally have lower energy consumption and the materials used are less polluting
to the environment. The glucose-sensitive hydrogel, because of its high biocompatibility, is widely
used for insulin injection in diabetic patients. Thus, these valves have great advantages for protecting
the environment.

Table 9. Comparison of different microvalves based on properties of material and creature.

Type Advantages Disadvantages

Light Long distance control Long response time
pH No energy consumption Long response time

Glucose High biocompatibility Difficult to produce
Paraffin Low cost High energy consumption

Low melting point alloy Reusable, easy to manufacture High energy consumption
SMA Shape memory effect High energy consumption

Biology No pollution Long response time

2.5. Surface Acoustic Wave (SAW)

Surface acoustic wave (SAW) is an elastic wave propagating along the surface of an object. The
development of SAW technology has been greatly accelerated by the invention of a coded interdigital
transducer (IDT), which responds only to a coded signal. The SAW device consists of an input IDT and
a coded output IDT deposited on top of a piezoelectric substrate, which is shown in Figure 20 [121]. The
input IDT transduces the coded input RF signal into an acoustic wave [122]. Figure 20 also displays the
structure of the SAW based microvalve in the OFF/normally closed state and the ON state. In ON–OFF
switching applications, the valve efficiency of an active microvalve with diffuser elements is poor in
the reverse direction due to high leakage. Thus, the microcheck valve is installed in the fluid channel
to realize the desired leak-tight operation. In the ON state, when interrogated by a correlating signal
the double membranes inflate due to electrostatic actuation and inhale the fluid into the chamber [122].
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Many microvalves based on SAW are utilized to for the purpose of secure wireless actuation. There
are lots of advantages in the realization of a SAW microvalve including secure [122], reliable and low
power operation [121], small size [123], simplicity in construction [124] and cost effectiveness [125]. Such
microvalves have a huge range of applications such as in micro electro-mechanical systems (MEMS),
nano electro-mechanical systems (NEMS) [121], biomedical applications, lab-on-chip applications [124],
drug delivery [125,126], and so on.

The group of Dissanayake developed a novel wirelessly driven microvalve based on SAW. It did
not require battery, and the safety of it was ensured by a coded SAW correlator. They also researched a
microvalve utilizing radio frequency (RF) control on a PZT substrate for the application of biomedicine.
For the wireless aspect of the whole device, the RF antenna was added in the SAW microvalve. A
parallel type piezoelectric bimorph actuator was designed for achieving a better coupling between
electrical signal and mechanical actuation [121,124].

According to Tikka et al., an SAW microvalve for long-range control was presented, including
an electrostatic microchannel, two conducting diaphragms and two acoustic wave correlators. The
safety of the valve was proved by FEM. SAW microvalve using the technology of inductively coupled
RF, was studied for human body implant and long-distance drug delivery. The BPSK signal and the
interrogator were the important part to achieve the contactless control of valve through near-field
inductive coupling. The numerical model of it was established, and the results of simulation revealed
that the device had advantages of small size and long working life. They also presented the method to
improve the security of the wirelessly actuated microvalve. The valve was designed to be driven by
the minimum value about electromagnetic (EM) radiation, considering existing EM radiation. Length
about the required code was researched to guarantee safe manipulation [122,123,125,126]. Zhang et al.
reported a novel SAW microvalve consisted of the piezoelectric substrate and an interdigital transducer
(27.5 MHz). The working principle of the device was that the paraffin location was adjusted by the
phase change of paraffin from solid to oil, to realize the valve manipulation. And red dye solution was
applied to demonstrate the operation of the device and characterize the performance of it [127].

3. Future Research

The works that have considered microvalves are valuable, but by reviewing the literature, it is
believed that further improvement and trial are still needed. Although the performance of microvalves
have been improved in recent years, there are many disadvantages still existing, including high energy
consumption, high cost, complex structure and the leakage of the whole microfluidic system. Because
of the complex structure and many components, the traditional mechanical actuated microvalves
cannot be completely integrated with the microfluidic system, resulting in the leakage problem. The
active microvalves having externally driven devices, power consumption and portability still are big
problems. The heat dissipation problem with external driven devices also effects the performances
and accuracy of the microvalves. As the scope of application continues to expand, scientists have put
forward the higher performance of microvalves. Current microvalves often only meet one certain
requirement and they cannot meet multiple requirements at the same time. Therefore, in order to
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further improve the performances of microvalves, the research of microvalves can be started from the
following aspects:

1. Lightweight material. Unlike traditional valves, the main feature of microvalves is their light
weight. The use of lightweight materials can reduce the weight of the microvalve and improve its
portability. The change from the metal material to polymer material is an obvious trend. However, the
performance of the lightweight material should be improved. For example, when the microvalve is
utilized in the outer space, the material should have a wider operating temperature range and work
normally at low temperatures. It also has to withstand greater pressure differences. Anti-staining ability
is also one of the most important characteristics of the material. New materials like nanomaterials
could be used in microvalve manufacturing.

2. Integrated processing technology. Leakage is mainly caused by the improper assembly of
components. The more components, the more assembly steps, the greater the leakage rate is. Integrated
processing technology reduces the number of components in microvalves and the area of the dead zone,
the accuracy of the fit is guaranteed to be below the micrometer. The development of micromachining
is of benefit to integrated processing technology of the microvalve, like laser etching, rapid prototyping,
and so on. Packaging is also a big problem in microvalves. Meanwhile, 3D printing technology is a
choice that can be used for microvalve manufacturing.

3. Controlling performances. There are more and more actuation mechanisms applied to
microvalves, and controlling performance depends on the actuation mechanism. Control accuracy and
reaction time are two important indicators in the controlling performance of microvalves. Controlling
fluid flow is one of the most important functions of microvalves, and the controlling performance of
microvalves should be improved by optimizing actuation mechanism.

4. Flow characteristics. Due to the influence of microscale effects, the surface force cannot be
ignored, so the flow of fluid in the microfluidic system is different from the macroscopic field [128]. It
is necessary to establish a complete theoretical model of the microvalve. The numerical simulation
method is combined with the experiment to study the internal flow mechanism of the microvalve,
which is beneficial to the manufacture of microvalves, reduce costs and increase efficiency. What is
more, common problems in valves like cavitation and vibration also compare in microvalves. Thus,
the investigation of flow characteristics of fluids at the microscale is significant. The analysis of flow
characteristics in industry valves is relatively complete, and is of great significance for studying the
flow characteristics of microvalves.

5. Applications. Microvalve can save energy and provide precise control of the fluid. Up to now,
little microvalves are utilized in the outer space. The microvalve is also a good choice to be used in
the fuel cell, especially the hydrogen vehicles. Due to safety issues, hydrogen vehicles are highly
demanding for hydrogen flow control, so microvalves may be a good alternative. In addition, the
application of microvalves in the human body has become a trend [129], and microvalves have a good
effect on eliminating effusion in certain organs. The biocompatibility of microvalve materials needs to
be considered firstly.

4. Conclusions

With the rapid development of microfluidic technology, microvalves have received more and
more attention from scientists. To improve the performance of microvalves, plenty of new structures
and new materials are proposed to be utilized in the valve. New working principles have obviously
reduced the cost, leakage rate, power loss, and dead zone of the microvalve, and increased the response
speed and the biocompatibility. Microvalve applications are rapidly expanding from initial laboratory
biochemical analysis to many other areas. More and more microvalves are applied in the human body
to cure disease, like the brain, the eyes, and the blood vessel. Some microvalves are even utilized
for the application of micro fuel cells. Many microvalves have many special actuation mechanisms
based on their unique application environment, such as light actuated microvalves, biological actuated
microvalves and glucose-sensitive actuated microvalves. Most early microvalves based on MEMS



Micromachines 2020, 11, 172 32 of 38

technology are mechanically actuated microvalves, while metal materials and silicon materials are
utilized to fabricate microvalves by the multi-layer silicon process. Due to the complex structure
of the device, it is difficult to integrate with the microfluidic system and it has many problems like
high cost, poor reliability, high power consumption, and leakage problem. With the development of
non-traditional manufacturing technologies, materials of microvalves have gradually transformed
from silicon to polymer and PDMS is the most commonly used polymer material in microvalves. These
microvalves are integrated easily with the microfluidic system. Low cost, good sealing performance,
low leakage, and a small dead volume are the main advantages of these microvalves.
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